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Abstract This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case
studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for
monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global
Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S.
Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but
was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion
of root zone soil moisture caused by yearlong below-normal precipitation. In contrast, for the central
Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring
of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly
depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer.
Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were
significantly correlated with those of root zone soil moisture, indicating that the former can potentially
be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms.
Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were
caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence
yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations
of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought
monitoring.

1. Introduction

Drought is among the most damaging and least understood climate extremes in many regions of the
world. In the U.S. alone, drought has led to losses of hundreds of billions of dollars during the last three
decades [Smith and Matthews, 2015]. The U.S. Great Plains is particularly vulnerable to drought, as evident
by the extreme events in the 1930s (“Dust Bowl”) and 1950s [Cook et al., 2007], as well as the 2011 Texas
drought [Seager et al., 2014] and the 2012 drought in the central Great Plains [Hoerling et al., 2014].
Further, an increasing drought risk that accompanies the warming trend in the 21st century is projected in
this region by state-of-the-art general circulation models [Cook et al., 2015], although the severity is uncertain
[e.g., Hoerling et al., 2012]. As a major “bread basket,” the Great Plains’ high vulnerability to drought threatens
both regional and global food security.

There is an urgent need for a system of early warning and real-timemonitoring of emerging drought that can
provide information on plant physiological stress for agricultural planning and mitigation in this region. Such
a system can benefit from existing drought-monitoring efforts, such as the North American Land Data
Assimilation System (NLDAS) Drought Monitor [Sheffield et al., 2012; Xia et al., 2014a] and the U.S. Drought
Monitor (USDM) [Svoboda et al., 2002]. In particular, the latter uses various indicators to track different
components of the water cycle, e.g., precipitation, soil moisture, streamflow, and runoff, providing both
quantitative (drought intensities) and qualitative (assessment of social impacts) information on water status
at varying time scales.
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Satellite observations of vegetation status, which is strongly influenced by soil water stress, complement
ground- and model-based operational systems such as those of the USDM and NLDAS. The routine availability
of normalized difference vegetation index (NDVI) data sets has led to the development of operational drought
monitoring systems based on vegetation status information. For example, the VegDRI system uses the vegetation
drought response index, which integrates NDVI-derived vegetation anomalies and climate-related variables as
well as biophysical parameters of soils and land cover/use, for real-time drought monitoring across the
contiguous U.S. [Brown et al., 2008; Wardlow et al., 2012]. The DroughtView system, hosted by the University
of Arizona (http://droughtview.arizona.edu/), also relies on high-resolution NDVI products to monitor drought
in the southwestern U.S. Various extended indices built upon NDVI have been developed to improve the
characterization of drought, for example, the vegetation condition index [Liu and Kogan, 1996], vegetation
health index [Kogan, 1995], and drought severity index [Mu et al., 2013]. The enhanced vegetation index
[Huete et al., 2002], developed to overcome some shortcomings of the NDVI (e.g., atmospheric contamination
and saturation with dense canopies), has also been widely applied to characterize drought, for example, the
forest response to drought in the Amazon [Xu et al., 2011] and in Congo [Zhou et al., 2014].

While hydrology- and vegetation-index-based methods are indispensable for monitoring large-scale drought
events, the information they provide is only indirectly related to vegetation functioning. From the perspective
of agricultural planning and mitigation, stress-induced degradation in vegetation functioning is a more
direct indicator of increased risk of reduction in plant productivity and crop failure. In this regard, detecting
and monitoring drought dynamics based on the newly available satellite retrievals of solar-induced
chlorophyll fluorescence (SIF) offer the potential to complement existing methods and provide critical
information that meets planning and mitigation needs in agriculturally important regions such as the
U.S. Great Plains.

The SIF is essentially a “glow” of plants under sunlight. The absorbed photosynthetically active radiation
(APAR) by a leaf has several potential fates. In addition to being used to drive photochemical reactions to
reduce atmospheric CO2 (photosynthesis), it can be reemitted as fluorescence at longer wavelengths. The
absorbed energy can also undergo radiationless decay or be lost through regulated nonphotochemical
quenching (NPQ) processes [Baker, 2008]. As a consequence of energy conservation, variations in SIF contain
information about plant biochemical, physiological, andmetabolic functions as well as the amount of APAR. If
drought induces changes in these functions, such changes will necessarily result in changes in SIF, usually
reductions of both the photosynthesis and fluorescence yield [Flexas et al., 2002; Daumard et al., 2010].
Indeed, Damm et al. [2015] used airborne sensors to show that there is an ecosystem-specific relationship
between gross photosynthesis and far-red SIF. Therefore, both on theoretical and empirical grounds, satellite
SIF has been considered to be the most directly measurable signal of terrestrial photosynthesis from space
[Frankenberg et al., 2011b].

Although, so far, no satellite has been specifically designed and launched for SIF measurements, the potential
of such information has motivated a number of researchers to derive SIF signals from spectral measurements
obtained by existing satellite platforms [Guanter et al., 2007, 2012; Frankenberg et al., 2011b; Joiner et al., 2011,
2012, 2013]. These satellite SIF signals have been shown to be highly correlated with terrestrial gross primary
production for natural vegetation [Frankenberg et al., 2011b] and croplands [Guanter et al., 2014] and with
the seasonality of carbon uptake at flux tower sites [Joiner et al., 2014]. These studies suggest that SIF is an
important, perhaps also the most direct, remotely sensed measure of vegetation canopy functioning.

Fluorescence has been used to study water stress at different spatial scales. Flexas et al. [2002] found a
decrease of fluorescence yield under water stress for C3 leaves. Daumard et al. [2010] reported a reduction
of canopy-scale fluorescence during a drought episode even though canopy greenness remained
unchanged. This finding suggested that SIF may have a higher sensitivity to vegetation stress than
vegetation indices that measure only plant greenness. Lee et al. [2013] quantified the degree of drought
stress on productivity of the Amazon rainforest by using SIF measured by the Japanese Greenhouse-gases
Observing SATellite (GOSAT).

To ascertain the potential of using satellite SIF to detect and monitor drought development in the context of
agricultural planning and mitigation, it is essential to examine the role of soil moisture, particularly that of
root zone water content, in the SIF-drought relationship. Drought causes soil moisture deficit, which in turn
leads to stomatal closure and reduction in photosynthesis and transpiration, important plant functions that
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affect fluorescence yield [Baker, 2008]. Severe droughts may result in acute shortage of soil moisture across the
whole rooting depth of plants, causing leaf wilting and loss of chlorophyll [Hsiao, 1973]. The consequence of
these effects may be reduction in the capacity of vegetation to absorb PAR and therefore a suppression in
SIF. Consequently, the change of SIF is expected to be closely related to that of soil moisture integrated across
the root zone but their phase relationship may depend on the intensity of soil moisture deficit.

We test this hypothesized linkage by investigating two contrasting extreme drought events in the U.S. Great
Plains: the 2011 Texas drought and the 2012 drought in the central Great Plains (Figure 1 and Figure S1 in
the supporting information). In 2011, Texas endured the most extreme single-year drought since 1895, with
nearly the entire state area falling under the USDM “Exceptional Drought” category (the highest intensity D4)
in the summertime of the year (Figure 1a). The annual rainfall fell to only 40% of its long-termmean, resulting
in severe soil moisture deficits [Long et al., 2013]. This drought caused $7.6 billion in agricultural losses
[Fannin, 2012]. The associated unprecedented high temperatures induced numerous wildfires that burned
almost 4 million acres across Texas [Combs, 2012].

In the summer of 2012, over three quarters of the contiguous U.S. experienced unusually dry conditions; in
particular, states in the central Great Plains suffered extreme drought (Figure 1b). With rainfall only at half
of the long-term mean, this event was the most severe seasonal drought in the central Great Plains in more
than a century [Hoerling et al., 2014]. Economic losses were over $30 billion as estimated by the National
Climatic Data Center (http://www.ncdc.noaa.gov/billions/events), and substantial decreases in maize and
soybean production were reported by the U.S. Department of Agriculture [Gilbert, 2012].

Figure 1. Drought intensity and its impact on vegetation of the two extreme drought events: (a, c) the 2011 Texas drought
and (b, d) the 2012 drought in the central Great Plains. Figures 1a and 1b show the spatial extent of the drought category in
the last week of August, i.e., 30 August 2011 (for the Texas drought) and 28 August 2012 (for the central Great Plains
drought). Data are from the U.S. Drought Monitor. Figures 1c and 1d show the anomalies of the solar-induced chlorophyll
fluorescence (SIF) in August. Here the anomalies are normalized by the standard deviation in order to make the SIF
signals spatially comparable. The green boxes (27–34°N, 94–103°W for Texas, and 35–42°N, 93–103°W for the central
Great Plains, respectively) highlight the regions that are used for deriving the region-wide averages.
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These two drought events represent an opportunity for a comparative study of the drought-soil moisture-SIF
relationships because they differed in the development of the drought dynamics and occurred in regions
with contrasting water management practices. The Texas drought was characterized by persistent deficits
in precipitation that started from late 2010 [Seager et al., 2014], and the induced soil moisture depletion
intensified throughout spring and summer in 2011 [Long et al., 2013]. In contrast, the 2012 drought in
the central Great Plains was preceded by relatively normal precipitation and warmer surface temperature
in spring followed by an abrupt rainfall reduction and abnormally high temperatures in summer, typifying
a “flash” drought [Hoerling et al., 2014; Mo and Letternmaier, 2015]. The two drought extremes happened
within the era of the satellite SIF observations, making them ideal examples to study the response of SIF
to drought.

In this study, we aim to address the following questions: (1) Can SIF detect the differences in the temporal
progression and spatial extension of the two contrasting droughts? (2) How are the temporal and spatial
dynamics of SIF related to those of soil moisture, precipitation, temperature, and evapotranspiration (ET)
under these two different drought regimes? (3) How do different processes contribute to drought-induced
changes in SIF (i.e., changes in APAR versus fluorescence yield)? (4) What improvements are needed in the
still relatively new satellite SIF measurements in order to better serve the needs of the large-scale agricultural
community in terms of drought planning and mitigation?

2. Data and Methods
2.1. Framework for Interpreting Dynamics of SIF

Analogous to fluorescence emission from a leaf, SIF from a canopy (F) can be expressed as

F ¼ ϕ � fPAR � PAR ¼ ϕ �APAR (1)

where fPAR is the fraction of absorbed PAR, i.e., APAR = fPAR × PAR and ϕ is defined as the effective
fluorescence yield of the canopy; here ϕ can be considered as the product of the actual fluorescence
yield of the canopy and the fraction of the canopy emission that escapes to the atmosphere. These two
factors cannot be separated in satellite-based measurements; only their product ϕ can be determined,
i.e., ϕ = F/(fPAR × PAR) = F/APAR, where F, fPAR, and PAR can be estimated from remotely sensed variables.
For examination of the relative changes under clear-sky conditions, as is done in this study, the absolute
value of PAR is not needed. Instead, one could simply examine spatial and temporal variations in

F
cos Zð Þ∝ϕ � fPAR; (2)

F
cos Zð Þ � fPAR

∝ϕ; (3)

where cos(Z) is used as a proxy of PAR and Z is the solar zenith angle. Equation (2) describes the combined
net effect on F resulting from changes in vegetation physiological and biochemical states, which primarily
affect ϕ and in vegetation structural variables (e.g., chlorophyll content, LAI), which affect fPAR. Equation (3)
isolates the effect on ϕ. Yoshida et al. [2015] used a similar approach for separating ϕ. Similar to light use
efficiency models of photosynthesis widely used by the remote sensing community, equations (1)–(3)
greatly simplify fluorescence emission, transfer, and absorption in a plant canopy by treating it as a big
leaf. While such simplification ignores the complexities caused by the 3-D structure of a canopy, Damm
et al. [2015] suggested with simulations of the Soil-Canopy Observations of Photosynthesis and Energy
Balance model (SCOPE) [van der Tol et al., 2009] that the generally linear feature of these equations is
adequate for separating changes in F caused by variations in fluorescence yield from that of APAR. Note
also that equations (1)–(3) do not explicitly capture effects such as the impact of diffuse versus direct
beam radiation on canopy fluorescence [Yang et al., 2015]. Since the present study focuses on clear-sky
or nearly clear-sky conditions, the impact of variations in F caused by changing diffuse to direct beam
ratios is minimized.

2.2. Satellite-Based SIF Data

Our study uses two satellite-based SIF data sets retrieved from different instruments. The first SIF product is
inferred from the Global Ozone Monitoring Instrument 2 (GOME-2) on board Eumetsat’s MetOp-A satellite. It
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provides retrieval of the far-red chlorophyll fluorescence peaking at 740 nm, which is estimated from
measurement over a broad spectral range (734–758 nm) [Joiner et al., 2013, 2014]. The retrieval employs a
simplified radiative transfer model together with a principal component analysis to disentangle the spectral
signatures of atmospheric absorption, surface reflectance, and fluorescence emission. The version 26 level 3
data set used here provides monthly global coverage of SIF observations at 0.5° × 0.5° spatial resolution and
covers the period from 2007 to present.

In addition, we use SIF retrievals from the GOSAT [Frankenberg et al., 2011a, 2011b]. These retrievals are
solely based on the in-filling of the Fraunhofer lines between 755 and 775nm from spectra recorded by the
Thermal And Near infrared Sensor for carbon Observation (TANSO) Fourier Transform Spectrometer (FTS). The
TANSO-FTS high spectral resolution ensures a more robust and accurate SIF retrieval as atmospheric absorption,
scattering, and albedo effects can beminimized using narrow spectral fittingwindows [Frankenberg et al., 2011b].
However, the GOSAT SIF retrievals have a lower spatial resolution (4° × 4°) and shorter duration (2009–2012) as
compared with GOME-2. We therefore primarily use the GOME-2 data set in our analyses. We further apply a local
3×3 window (1.5° × 1.5°) smoothing to minimize the noise inherent in the original retrieval.

2.3. Satellite-Based fPAR

We use the MODerate resolution Imaging Spectroradiometer (MODIS, Collection 5) MOD15A2 fPAR data set
[Myneni et al., 2002] in our analyses. The fPAR data set is an 8 day composite at 1 km×1 km. Its information to
derive fPAR comes from the same reflectance used to compute vegetation indices such as NDVI. The primary
purpose of using fPAR here is to identify its relative contribution to drought-induced decrease of SIF.

2.4. Soil Water Content Simulated by Land Surface Models

Ground measurements of root zone soil moisture are spatially sparse in the study regions, and remotely
sensed soil moisture through microwave is generally restricted to the top few centimeters of soil. We
therefore use the soil water content (SWC) simulated by the NLDAS Phase 2 (NLDAS-2) land surface models
[Xia et al., 2012]. A major mission of NLDAS-2 is to provide support for the National Integrated Drought
Information System. These NLDAS-2 models are driven by reanalysis of atmospheric forcing and run at 1/8°
over the contiguous U.S. from 1979 to present. Here three-model products are used: the Mosaic [e.g., Koster
and Suarez, 1992], Noah [e.g., Ek et al., 2003], and the Variable Infiltration Capacity (VIC) [e.g., Liang et al.,
1994]. Mosaic has three soil layers: 0–10, 10–40, and 40–200 cm, and the centers of each layer are 5, 25, and
120 cm, respectively. Noah provides soil moisture at four soil depths with spatially fixed thicknesses, 0–10,
10–40, 40–100, and 100–200 cm centered at 5, 25, 70, and 150 cm, respectively. VIC has three soil layers; its first
soil layer has a fixed thickness of 10 cm and the other two soil layers have depths spatially varying from grid
to grid. These simulated soil moisture products have been evaluated with in situ measurements across the
contiguous U.S. They generally capture the wet/dry events and have high correlation with measurements
in terms of temporal variability although large biases exist in terms of absolute magnitude [Xia et al., 2014b].
Previous studies demonstrated the capability of NLDAS-2 Mosaic and Noah models to depict the depletion
of soil water in the 2011 Texas drought [Long et al., 2013].

Here we use the SWC within the top 100 cm soil layer to represent the root zone soil moisture, as typically
used for monitoring agricultural drought. For the VIC model, which has spatially varying soil layers, a vertical
interpolation is performed to convert SWC into four uniform soil layers corresponding to those of the
Noah model, following the protocol of Xia et al. [2014b]. We then compute the ensemble mean of root zone
SWC from the three NLDAS-2 models and only use this ensemble mean in our analyses. This practice takes
advantage of the fact that model simulation skills vary among regions andmodels, but their ensemblemeans
generally show better performance than any individual model [Xia et al., 2014b]. The Noah model itself uses
100 cm root depth for grasslands and crops and 200 cm for woodland and forest, whereas the Mosaic model
sets root depth to 40 cm for all vegetation types. The root depths of the VIC model vary from 135 cm to
300 cm, depending on vegetation type. Consequently, the use of the top 100 cm to calculate the mean
SWC of the three models represents a compromise among the three models and appears to be characteristic
of the root zone depth in the Great Plains.

2.5. Other Climate Variables

Multiple climate-related variables are employed to help interpret the temporal and spatial dynamics of SIF
during the two drought events. They include precipitation, temperature at 2 m height from ground, and ET.
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The 2 m temperatures and precipitation are from the NLDAS-2 climate forcing, derived from the NCEP North
American Regional Reanalysis (NARR) [Mesinger et al., 2006] and NOAA Climate Prediction Center (CPC) gauge-
based analyses, respectively. The three NLDAS-2 models share identical meteorological forcings. ET data are
obtained from the NLDAS-2 model output, which have been shown to exhibit close correlation with MODIS
and GRACE-based ET products in the southern Great Plains [Long et al., 2014] and have been comprehensively
evaluated against flux tower observations [Xia et al., 2015]. We derive a three-model ensemble mean of ET as
we do for the soil moisture.

2.6. Calculation of Anomalies

We calculate monthly anomalies of all the aforementioned variables to obtain drought stress-related signals.
The anomalies are computed as a departure from their corresponding multiyear mean for each month. The
multiyear mean and anomalies are established from 2007 to 2013 for all data sets. The GOSAT SIF data
are only available from 2009 to 2012; thus its anomaly is calculated as departure from the average of this
4 year period.

2.7. Matching Spatial Resolution for Different Datasets

The spatial resolution of different data sets used in this study varies substantially. For example, the GOME-2
SIF has a spatial resolution of 0.5° while fPAR is at 1 km and themodeled SWC at 0.125°. Therefore, it is necessary
to reprocess the data in order tominimize potential discrepancies resulting from themismatch in spatial resolu-
tion for quantifying the relationships among SIF, root zone SWC, ET, and temperature. We spatially aggregate
the finer resolution products, i.e., fPAR and SWC, to match the SIF grid size. In addition, the 8 day fPAR data
set is temporally aggregated into monthly means, consistent with the SIF data set.

3. Results

Our analyses show that strong negative anomalies of GOME-2 SIF existed during the 2011 Texas drought and
the 2012 central Great Plains drought and that their spatial patterns were consistent with the USDMmapping
of these two events (Figures 1a and 1b). At the peak of the 2011 Texas drought (August), there were substan-
tial SIF negative anomalies throughout Texas, with departures generally exceeding 1 standard deviation from
the multiyear mean (Figure 1c). Large negative SIF anomalies were also observed in Oklahoma, southern
Kansas, and western New Mexico. The areas with the largest negative SIF anomalies generally corresponded
to those designated as exceptional drought (D4) by the USDM (Figure 1a). The GOSAT SIF anomalies exhib-
ited a spatial pattern consistent with that of GOME-2 but with somewhat different amplitudes (Figure S2a).
The latter difference is likely a combined consequence of the coarse resolution of the GOSAT data set, obscur-
ing small-scale details, its inference of SIF at a different reference wavelength compared to GOME-2, and the
different satellite overpass times.

The 2012 central Great Plains drought, which also peaked in August (Figure 1b), had a widespread reduction
of SIF across Nebraska, Kansas, Iowa, Missouri, Illinois, Indiana, and Oklahoma (Figure 1d). Northwestern
Texas, in contrast to the eastern Texas, also displayed a considerable negative SIF anomaly. The GOSAT SIF
likewise captured this large-scale drought pattern across the central Great Plains and the spatial drought
gradient in Texas (Figure S2b) but showed a much larger area with negative anomalies including the western
Great Plains and eastern U.S., where the USDM indicated that drought was not as severe as in the central
Great Plains (Figure 1b). Thus, our analyses demonstrate that satellite SIF available from current instruments
has the potential to delineate the spatial extent of regions under the impact of drought, even though these
instruments were not specifically designed for measuring SIF.

Can SIF also capture the dynamic process of drought development? For most months during the Texas
drought in 2011, the spatially averaged GOME-2 SIF (averaged over 27–34°N, 94–103°W as highlighted in
Figure 1c) was significantly smaller than the corresponding multiyear mean (Figure 2a). Here significance is
considered as a departure >1 standard deviation. The difference between 2011 and the multiyear mean
values was relatively small in spring but grew larger until near the end of 2011 when the drought was
interrupted by precipitation (Figure 2e). The simulated ET showed a broadly similar temporal pattern,
although subtle differences existed (Figure 2c). Presumably, the broad similarity between SIF and ET reflects
the tight coupling between photosynthesis and transpiration [e.g., Ball et al., 1987]. These persistent negative
vegetation responses were a consequence of the long-lasting soil water depletion in the root zone (Figure 2d)
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caused by the large precipitation deficit throughout 2011 (Figure 2e), probably also exacerbated by anoma-
lously high temperatures (Figure 2b). The soil water deficit maximized during summertime, corresponding to
the maximummonthly depression in SIF. As the soil moisture started to recover near the end of 2011 following
rainfall episodes, the SIF signal moved toward its multiyear mean (Figure 2a). However, although precipitation
and soil moisture increased from a late summer minimum, SIF did not, probably because by that time vegeta-
tion had entered into a less active stage and seasonal PAR had peaked, as indicated by a general decline in the
multiyearmean SIF (Figure 2a). The temporal dynamics of SIF and associated variables were also reflected in the
spatial distributions of their anomalies for the spring and summer of 2011 in Texas (Figures 3a–3h).

The 2012 central Great Plains drought (35–42°N, 93–103°W as highlighted in Figure 1d) showed a different
temporal pattern of drought development (Figures 2f–2j). In spring 2012, the monthly GOME-2 SIF rose more

Figure 2. (a and f) The region-wide mean seasonal cycle of GOME-2 SIF, (b and g) temperature 2 m above ground (T2m),
(c and h) evapotranspiration (ET), (d and i) soil water content (SWC) integrated through the plant root zone (0–1m), and
(e and j) precipitation (P) for Texas (left column) and for the central Great Plains (right column). The black curves
represent the monthly multiyear mean of each variable between 2007 and 2013; the red curves show the seasonal
evolution during the drought year (2011 for Texas and 2012 for the central Great Plains, respectively). The grey shaded
area is the ±1 standard deviation of the multiyear mean.
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rapidly than the multiyear mean (Figure 2f), as also did ET (Figure 2h). This rise was apparently caused
by favorable conditions for vegetation growth in early 2012. The temperature was warmer (Figure 2g)
and the precipitation was similar to multiyear mean (Figure 2j), while the soil moisture was only slightly
below normal (Figure 2i). However, by May, the vegetation growth conditions in the Great Plains started
to deteriorate as the precipitation turned from above to below normal and the soil moisture deficit
widened sharply. The persistently high spring temperatures, among other factors, probably exacerbated
the sharp decline of soil moisture in summer. This deteriorating growth condition led to the change of the
monthly GOME-2 SIF around May from being higher than normal to less than normal. Its departure from
normal widened until some precipitation events occurred and resupplied moisture to the soil late in
the summer. Similar to the 2011 Texas drought, the simulated ET showed temporal dynamics broadly
resembling that of the GOME-2 SIF with some difference occurring around the time when the drought
started to break (Figure 2h). As in the 2011 Texas event, the spatial distributions of the SIF anomalies
and environmental variables revealed the dynamic progression of drought from spring to summer of
2012 in the central Great Plains (Figures 3i–3p).

The PAR-normalized SIF (i.e., equations (2) and (3)) provides further insights into the component processes
that were responsible for the drought-induced changes in SIF during the two droughts (Figure 4). Once
the effects of seasonal variations in PAR were removed (equation (2)), the drought impacts on SIF became
more pronounced for both drought events and the contrast between them became clearer (compare
Figures 2a and 2f with Figures 4a and 4d, respectively). Sustained decrease in fPAR (Figure 4b) and in the
effective fluorescence yield (equation (3) and Figure 4c) was observed in 2011 for the Texas drought. For
the 2012 event in the central Great Plains, both fPAR (Figure 4e) and the effective fluorescence yield
(Figure 4f) were higher than the corresponding multiyear mean for early spring but this pattern was reversed
in the rest of the year. Thus, our results indicate that both fPAR and the effective fluorescence yield were
affected by the droughts and contributed to the observed dynamics of SIF.

Figure 3. The spatial distributions of the anomalies of SIF, T2m, ET, and root zone SWC for the U.S. during (a–h) the 2011 Texas drought and (i–p) the 2012 central
Great Plains drought. Spring (April and May) and summer (June, July, and August) anomalies are separated, demonstrating the dynamic development of two
drought events.
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The seasonal pattern of the PAR-normalized multiyear mean SIF is dominated by that of fPAR in the central
Great Plains (compare Figures 4d and 4e). However, during 2012, the pattern was more similar to that of
the effective fluorescence yield than to that of fPAR (compare Figures 4d and 4f). In particular, both the
PAR-normalized SIF and the effective fluorescence yield peaked in April 2012 and then declined steadily
afterward. In contrast, fPAR was relatively stable from April to July 2012. This indicates that the steady
decrease in the effective fluorescence yield was responsible for the decreasing trend in the PAR-normalized
SIF from its early spring peak in 2012. Only after July 2012, fPAR started to decline and its significant deviation
from themultiyear mean contributed to the SIF reduction. For Texas, the seasonal pattern of the PAR-normalized
SIF (Figure 4a) was more similar to that of the effective fluorescence yield (Figure 4c) than to that of fPAR for both
the 2011 drought and the multiyear mean.

Therefore, our analyses indicate that the GOME-2 SIF not only depicts the spatial extension of both drought
events but also captures the temporal dynamics of their impacts on fPAR and effective fluorescence yield.
These qualitative analyses are corroborated by the quantification of the relationships of SIF with key drought
sensitive variables in a broader context in Figure 5. Both in Texas (Figure 5a) and in the central Great Plains
(Figure 5b), the anomalies of GOME-2 SIF are significantly positively correlated with the anomalies of root
zone SWC across June, July, and August. The SIF-SWC correlations tend to be stronger in summer than in
spring and fall especially in the central Great Plains (Figures 5c and 5d). In addition to SWC, the SIF anomalies
also show significant positive correlation with ET (Figures 5c and 5d). In contrast, the correlation of SIF and

Figure 4. The region-wide mean seasonal cycle of (a and d) SIF normalized by photosynthetically active radiation (PAR)
(i.e., divided by cosine of solar zenith angle cos (Z), (b and e) fraction of absorbed PAR (fPAR), and (c and f) SIF normalized by
the absorbed PAR (APAR) (i.e., PAR-normalized SIF further divided by fPAR), which is related to fluorescence yield.
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temperature anomalies is more complicated. In Texas where climate is relatively warm, the SIF-T correlation is
negative throughout the growing season. In the central Great Plains, the correlation was only negative in the
summer but positive in spring, because of temperature control on spring phenology rather than soil moisture
in this region. The strong correlations of GOME-2 SIF with SWC, temperature, and ET are also reflected in the
striking resemblance between the spatial distributions of the anomalies of these variables for the spring and
summer of 2011 and 2012 (Figure 3).

4. Discussion and Conclusion

This study indicates that satellite-based SIF reasonably characterizes the spatial and temporal dynamics
of drought development and identifies regions with varying drought severity. Severe summer drought onset
can either follow a strong soil moisture deficit in spring due to lack of rainfall, such as during the 2011 Texas
drought [Fernando et al., 2015] or a relatively normal rainfall and warm spring but a sudden rainfall deficit in
summer, such as during the 2012 central Great Plains drought [Hoerling et al., 2014]. Such differences in
drought onset mechanisms lead to different soil moisture regimes, which in turn have contrasting impacts
on the development of plant activity. For the first type of drought, soil moisture constrained vegetation
growth in both spring and summer. For the second, “flash” type of drought, vigorous photosynthetic activity
in spring was stimulated by favorable temperatures, exhausting soil water supply, and amplifying the sharp
drop of soil water storage caused by sudden precipitation depletion later in the summer. The SIF signal can
well capture such contrasting dynamics of vegetation functioning and thus provide insights for interpreting
the development of drought.

In summertime, large decreases in the GOME-2 SIF occurred for both the Texas and central Great Plains
droughts. This happened because water supply is the limiting factor that determines plant photosynthesis
in summer, allowing the soil moisture deficit to be well tracked by abnormally low SIF values. The strong

Figure 5. Relationships between (a, b) the summertime root zone SWC anomaly and SIF anomaly (left: Texas; right: central Great Plains). Each dot represents a grid
cell within the defined areas in Figure 1 in a month from June to August between 2007 and 2013. Color demonstrates the density of dot distribution. The correlation
coefficients (R) and associated p values are also shown. (c, d) Monthly temporal evolution of the correlation of all grid cells in each month among anomalies of
SIF with SWC, ET, and temperature.
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SIF-SWC relationship revealed in this study indicates a potential of using SIF as a proxy for root zone soil
moisture for characterizing agricultural drought.

The SIF-soil moisture-drought relationship depends on variations of both APAR (or fPAR) and fluorescence
yield in response to water stress. Under extreme drought, for example, the two events examined in our study,
photosynthetic pigments can degrade and LAI decrease. Severe drought stress can also cause leaf wilting, a
sign of plant turgor loss or can trigger leaf movement and rolling, all of which can reduce effective LAI. All
these potential foliar changes reduce fPAR and therefore the energy for both photosynthesis and fluores-
cence emission [Porcar-Castell et al., 2014]. Presumably, some combination of these changes occurred for
both of our events as we observed the simultaneous drought responses of fPAR and SIF. In particular, when
drought starts before and persists throughout the growing season, plant phenology of the whole growing
season may be adapted to a new drought regime with sustained reduction in LAI, leading to a season-wide
suppression of photosynthesis and SIF.

Variations in SIF caused by changes in fluorescence yield are more complex. Our results indicate that both
drought events depressed the effective fluorescence yield of the vegetation in the study regions. Changes
in fluorescence yield may occur without concurrent changes in chlorophyll content and phenology, as for
example, in cases of relatively mild stress conditions compared to that of an extreme drought. Water deficit
usually induces stomatal closure and hence reduction of CO2 uptake, which in turn slows down photosynth-
esis. This reduces the proportion of APAR that is used to drive electron transport for carbon assimilation, or
“photochemical yield,” but this does not necessarily mean more APAR is available for fluorescing as the heat
dissipation via NPQ may increase to a level that compensates for the effect of reduced photochemical yield,
leading to a decrease of fluorescence yield and hence SIF (if there are no concurrent changes of chlorophyll
content or LAI) [Flexas et al., 2002; Daumard et al., 2010]. Although both SIF and fPAR are responsive to
chlorophyll content and LAI, SIF but not fPAR is sensitive to variations in fluorescence yield.

In a broad context, the sensitivity of satellite-observed SIF to the environmental variables that influence vege-
tation growth is complicated, because fluorescence yield is affected by biotic (species types, photosynthetic
capacities, etc.) and abiotic factors (e.g., nutrient availability, temperature, CO2 concentration, and radiation)
in complex nonlinear ways [Porcar-Castell et al., 2014]. Our inference of the drought effects on fluorescence
yield is indirect as it relies on the remote sensing of fPAR as an input, which may also contain errors. The fPAR
product used here is affected by not just green leaves but also by nongreen elements such as branches,
stems, and soils, which could confound the inference of the effective fluorescence yield. Also, it is possible
that the relatively simple linear correlative analyses in this study (e.g., Figure 5) may have primarily captured
stress-induced changes in chlorophyll content and LAI but not sufficiently in fluorescence yield. Additional
analyses could be performed with models that explicitly represent SIF processes [e.g., van der Tol et al.,
2014; Lee et al., 2015], so that one can further attribute the stress-induced variations of SIF to different sources.
For example, Yoshida et al. [2015] have used model-simulated SIF to examine the 2010 Russian drought and
found that it is broadly consistent with satellite-observed SIF pattern. This work further partitioned the SIF
variations (for both satellite and modeled data sets) into fluorescence yield and fPAR, similar to our analysis.
Nevertheless, more process-based studies of responses of leaf-, canopy-, and landscape-scale fluorescence to
environmental stresses with better temporally resolved experiments are needed. With guidance and data
from such studies, more sophisticated analyses of responses of SIF from satellite remote sensing to environmental
stresses can be developed.

Future satellite SIF products would be improved by tracking SIF variation on a subdaily scale. Field studies have
shown that the sensitivity of fluorescence yield to water stress is higher in the afternoon when plants water stress
tends to peak [Daumard et al., 2014]. The current GOME-2 SIF is measured at a local overpass time of 09:30A.M.,
when physiological water stress tends to be diminished by the resupply of plant water overnight and by the rela-
tively low atmospheric vapor pressure deficit in the earlymorning. Future satellite fluorescencemissions would be
improved by measurement of SIF both in the morning and afternoon. At present, such morning-afternoon obser-
vation coupling may be obtained by combining data sets from GOME-2 with those of the Orbiting Carbon
Observatory-2 (OCO-2) [Frankenberg et al., 2014] or could be explored after the future launch of TROPOspheric
Monitoring Instrument [Guanter et al., 2015]. Thus, with improved spatial resolution, timing of observation, sam-
pling density, and retrieval methods coupled with better mechanistic understanding of solar energy partitioning
at the leaf scale, future satellite SIF products should better serve drought monitoring needs.
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The Texas region appears to have a tighter coupling in summer months between SIF and the modeled soil
moisture than the central Great Plains (compare Figures 5a with 5b). This regional difference may be caused
by a lack of representing irrigation in NLDAS-2 models [Xia et al., 2014b], a process that is critical for plant
and crop growth in the central Great Plains. In addition, the simulated soil moisture can also be biased by
factors such as uncertainties in atmospheric forcing, model parameters of soil properties, model structural
deficiencies, etc. But overall, NLDAS-2 land surface models are able to simulate soil moisture that can
reasonably track the wet/dry variations compared to measurements [Xia et al., 2014b] and so capture
the considerable drawdown of soil moisture in extreme drought events as shown in this study. The close
relationship between simulated soil moisture and satellite SIF confirms the usefulness of these model
products in large-scale drought monitoring.

In summary, we find that satellite-based SIF has potential for characterizing and monitoring the spatial and
temporal dynamics of drought in vegetated regions. Using the droughts of 2011 in Texas and 2012 in the
central Great Plains as two case studies, we found that the satellite SIF anomalies can be used as a measure
of drought intensity in general and root zone soil moisture deficit in particular. The significant correlations of
SIF with drought-induced anomalies in key environmental variables and their spatial and temporal variations
are consistent with the expectation that SIF measures the physiological and biochemical state of vegetation
and is a direct signal of vegetation photosynthetic functioning. Future applications of satellite SIF could be
improved by better timing of observations, higher spatial resolution, and modeling of processes controlling
energy partitioning within the photosynthetic machinery.
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